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The concentration of the mixture is determined as a function of time and the 
parameters of the apparatus. 

In [i] relations were obtained describing the transitional process in a counterflow 
thermodiffusion apparatus with closed stream motion for a narrow range of variation of the 
concentration of the mixture being separated, when one can take c(l - c) = const. 

It is interesting to examine the separation process in such an apparatus in larger 
concentration regions, including such important cases as the cleaning out of a small admix- 
ture and enrichment with an initial low content of the component, when c(l - c) z a + bc~ 

A schematic diagram of the motion of streams of the mixture to be separated is presented 
in Fig. i. On the basis of the model formulated earlier [i], an equation is obtained des- 
cribing the variation of the concentration, 

Oc Ox 
m* - -  - - ,  ( 1 )  

Ot Oz 

with the boundary conditions 

The transport in the direction of the 

where 

Y=Ye OC Y=Ye T* y=O OC = % -~x" ' = ai ~ v=0" (2 )  

z a x i s  p e r  u n i t  w i d t h  o f  t h e  column i s  

z * = H * [ c ( 1 - - c )  O~y ],  (3 )  

H* -- H ap~g~6 3 (AT) 2 Hz g2p3~267 (AT) ~ B 
- -  _ ; y - -  .; K = -  

B 6!rlT K 9! "q2D 

In the closed scheme represented in Fig. i, the conditions (2) can be supplemented by 
the equalities of the concentrations at the entrance to and exit from the apparatus at the 
points of turning of the stream of the mixture to be separated: 

(c~ - -  cD~=0 = 0, (c~ - -  c~)~=B = 0. ( 4 )  

L e t  us c o n s i d e r  t h e  r e g i o n  o f  c o n c e n t r a t i o n s  in  which  t h e  l i n e a r  a p p r o x i m a t i o n  

c ( 1 - - c )  = a + bc (5 )  

i s  v a l i d ,  where  a and b a r e  c o n s t a n t s .  We i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  

M H~t x a 
t t=C--Co,  r 0 - - - ,  ~ = •  (6 )  

rnL ' mK "-if-' HB 

With a l l o w a n c e  f o r  ( 3 ) - ( 6 ) ,  t h e  i n i t i a l  r e l a t i o n s  (1 )  and (2 )  t a k e  t h e  form 

Ou _ O=u b Ou (7 )  
O0 @2 Oy 

Ou + •  a~ v=v~ (8 )  
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Fig. I. Diagram of stream 
motion in the column. 

[._~y au Ou ] = a +bco. 
au + x a-T--- ~=o ( 9 )  

As the initial condition we take 

ulo=o = O. ( 1 0 )  

We apply a Laplace transformation with respect to the time variable to (7), and for the 
transforms we find 

u = A exp ( + y) ch ~y + B exp ( @- y) sh ~y, (ii) 

where it must be kept in mind that A = A(~) and B = B(~). Determining A(~) and B(~) from 
(8) and (9) and substituting them into (ii), we obtain 

=C~exp ~ + - - - { - y  ch .... ~- -~y +C2exp ~ ~+---{--y • 

( ) ~176 (+ ) •  • g--ey + p2shaye a exp (y--y~) ch=y--  
(12) 

b b --exp ( +  y) ch (~zy~ -- tzy))-t- @ (exp ( @  y)sh(tzy~--~zy)+ exp (---~--y- -7-y~)sh ~zy)). 

To determine the constants C I and C 2 we use the conditions (4), giving 

(((5)  (- ) ~) (~) (+ )  ) C1= cz(a-k-bco) exp Ye sh ~z --eYe --sh exp b -}-exp ye shczYe , (13) 
/ sh ~zy~ sh cr • 

C.~ -. ~z(a + bco) / (__~_ ) . . . . .  (exp b% ch c~y~-- 1 -- 
p2 sh ay~ sh ~z.. 

• (14) (b~( (~)(o ) o)) --exp ~ )  exp ~ y e  ch - ~zy~ --ch . 
�9 N N 

Substituting (13) and (14) into (12), we obtain the solution for the transforms, which at 
the exits from the upper and lower channels at ~ = 1 and ~ = 0 takes the form 

- (a4-bco)b _~ (a+bco)O~ < a [ b ~) 
u~7~= 2P 2 p~sh ~- ch • --exp~---~ ) , (15) 

- (a-Z-bco)b (a+bco)~Z (ch ~z _ e x p (  b )) ,  
uik-- 2p ~ p ~ s h ~  • ~ . (16) 

where the subscript k corresponds to the values of U at the exit from the apparatus. 

Using the expansion theorem, we obtain 
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a + bc~k _ b _- 2b exp / b '~ 

b T 
X 

=1 k 4x~ J x 

a + bcih b 2b = z~n 2 

.... 5) ) ( ; • _ - -  1 • + ~ n  ~" a + bco 

b2 O t b • + 4z~2n~ ( 18 ) 
• [ 1 + (--I)~+~ exp ( - - - ~ - z )  ] exp 4 ' 

3{ 2 

From Eqs. (17) and (18) i t  fo l lows t h a t  in a s teady s t a t e  in a counter f low the rmodi f fu -  
sion apparatus with closed motion of the streams, the concentration is determined by the 
relation 

a q - b G ~  _ e x p {  b_.)__'~. (19) 
a + bcik k,,) 

In the case of cleaning, when the concentration of the main component is close to unity, 
a = i, b = -i, and the expression for the degree of separation takes the form 

1 - - c ~  -- exp ( @ ) .  (20) 
q = 1 - -  Cek 

A comparison of (17) - (20)  with the  corresponding r e l a t i o n s  de sc r ib ing  the  v a r i a t i o n  of 
the  c o n c e n t r a t i o n  in a the rmodi f fus ion  column c losed  at  both ends [2] shows tha t  i f  

1 
Ye = , (21) 

where Ye is the height parameter of the column closed at both ends while • is the parameter 
of pumping rate in the closed counterflow apparatus, then the kinetic curves and the degrees 
of separation in the steady state in these apparatus coincide. A decrease in the parameter 
• leads to an increase in the degree of separation. According to the definition (6), the 
dependence of • on the pumping rate and the size of the apparatus has the form 

6 

• -- - -  (22) 
HoB6~ ' 

where 

H0 = eg~9~ (AT)2 

6!~IT 

It is seen from Eqs. (19), (20), and (22) that, by varying the pumping rate o, the 
length B of the apparatus, and the working gap 6, one can significantly influence the deg- 
ree of separation in a counterflow apparatus with closed motion of the streams, with the 
degree of separation increasing with increase in the distance between the hot and cold 
surfaces. This fact is of practical interest, but it must be considered that an increase 
in the gap is limited by the conditions of the laminar convection regime in the working 
volume of the apparatus. 

NOTATION 

~, thermodiffusion constant; 6, volumetric expansion coefficient; 6, gap, i.e., dis- 
tance between the heated and cooled surfaces; p, density; o, mass rate of liquid pumping 
through the channels; n, coefficient of dynamic viscosity: B, length of the apparatus; D, 
diffusion coefficient; L, height of the apparatus; T2, TI, temperatures of the heated and 
cooled surfaces; AT = T 2-TI; T = I/2(T2+T!)/2 ; z, vertical coordinate; x, longitudinal 
coordinate; c, mass concentration; t, time. Indices: e, upper channel; i, lower channel; 
0, initial value. 
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SOLUTION OF ONE PROBLEM OF HEAT CONDUCTION IN A REGION 

WITH A MOVING BOUNDARY BY THE METHOD OF EXPANSION IN 

ORTHOGONAL WATSON OPERATORS 

N. N. Kuznetsova UDC 536.24 

The problem of heat conduction with branching of the heat flux at moving 
boundaries is solved by the method of expansion in orthogonal Watson op- 
erators. 

The problem of the temperature distribution along two linear heat conductors with 
thermally insulated lateral surfaces is considered. We assume that a linear combination 
of the unknown functions and their derivatives is assigned at the moving ends of these 
heat conductors, and the ends of a heat conductor move by a linear law. This problem 
comes down to the solution of the system [i] 

O~u 1 Ou 02v 1 Ov 

Ox ~ a ~ Ot ' Oy ~ b ~ .Ot ( 1 )  

in the region s + pt J x J s + pC, s - s > O; s + qt J y ~ s + qt, s - s > O, 
-~ < t < + ~, with the following initial (at t = -~) and boundary conditions at the bound- 
aries moving by the linear law: 

ult==~ -- 0, v]t=-~ = 0, 

+ + 
x = l , ~ - p t  ~ @- (~lt~V) - -  h i ( t ) ,  

~Z~l--~- x + ~_,u + ~z,~ = l, + ~t ~ + ~ v  h~ (t), 
= = 14 "k- qt 

{ ~ Ov ~ v  ) 

Ou + %2 u -~ cz~3 + r  =h~(t),  
~ 1 0 X  = 1 2 @ p t  ; =14~,  qt 

(2) 

(3) 

(4) 

(5) 

(6) 

where p, q~ s ~jk (i~ k = i, 2, 3, 4) are assigned positive constants; a~l + ~i ~ 0; 
~2 + ~2 0; a13 + a33 ~ 0; ~224 + a~4 ~ 0; hk(t) (k = l, 2 3, 4) are assigned functions 
of time satisfying the condition 

h h ( t ) e x p ( - - + ) 6 ~ ( . - o o ,  c~)(k=l, 2, 3, 4). (7 )  

As i s  w e l l  known [1 ,  2 ] ,  t h e  s o l u t i o n  can be r e p r e s e n t e d  in  t h e  form o f  sums o f  t h e  t h e r m a l  
p o t e n t i a l s  o f  a s i n g l e  and a d o u b l e  l a y e r :  
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